Transforming Image Completion

Problem Statement

With translation

Image completion is an important photo-editing task in which holes should be filled such that the image still **appears natural**. State of the art work uses patches from the rest of the image to fill the holes. We go beyond previous work to extend our search space to include patches in **natural transformations** of the source image:

With translation and rotation

Searching

Propose source patch **location** using one of:

Ex	Exhaustive search
PM*	Patch Match [1]

Propose transformation parameters using one of:

Discrete search
Continuous (Levenberg-Marquard
Generalized Patch Match [1]
Closed form optimisation (for brig

Quantitative results for a set of 8 images under rotation

Conclusions

- Using transformations can **give much better results**
- Important to **limit transformations** used, to ease search
- Important to determine an **appropriate patch size**
- using Patch Match based search algorithms

Paper and our Matlab/C++ code are available online: www.vision.ee.ethz.ch/~mansfiea/transformic/

generalized patch match correspondence algorithm, ECCV 2010 IEEE PAMI 2007

Alex Mansfield¹, Mukta Prasad¹, Carsten Rother², Toby Sharp², Pushmeet Kohli², Luc Van Gool¹ ²Microsoft Research, Cambridge, UK ¹Computer Vision Lab, ETH Zürich, Switzerland

16.8,22.8,9.91

