
Contents

1 Introduction 2

2 Previous work 4

2.1 Table-top environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Gesture-based interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Technical background 8

3.1 Camera calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Epipolar geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 The Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Dynamic time warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Overview 17

4.1 Key features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Implementation 21

5.1 Camera calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Background subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.3 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.4 Stereo matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.5 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.6 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.7 Gesture recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.8 Code optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.9 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Conclusions and evaluation 43

7 Extensions and future directions 44

8 Acknowledgements 46

9 Risk assessment retrospective 46

1



1 Introduction

Table-top environments are familiar as places of work, where they are often now aug-

mented by a PC. This has proved effective for individual work, though has been plagued

by issues of usability and is less effective for collaborative work. The paradigm of ubiqui-

tous computing (Weiser, 1991) has been proposed as a means of tackling these problems,

in which computing technology augments reality such that the computers fade into the

background and become unnoticed.

Designing and building effective technology within this paradigm is still an active area

of research (see Section 2.1); perhaps the two most common implementations have been

the use of multi-touch screens as the table-top, and the combination of a computer vi-

sion system and projector to allow an ordinary table to become interactive. Examples

of such systems are shown in Figure 1.

Recent advances in the field and the increased availability of computing hardware has

led to the beginnings of commercialisation of such interfaces. Examples of this are Mi-

crosoft Surface and the various technologies of the companies Mindstorm, Mgestyk and

GestureTek. These systems in general require specialist hardware systems and the cost

of these has prevented widespread uptake thus far. The motivation for this project was

to work towards systems that require only simple and affordable hardware available on

the high street, as in the work of Reitmayr & Drummond (2005).

(a) Surface display (from Microsoft,
2009)

(b) Projection (from Reitmayr &
Drummond, 2005)

Figure 1: Augmented table-top interaction systems
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(a) System setup (b) System in use

Figure 2: Developed gesture-interaction system

In this project, a working interface was developed which used computer vision methods

with cheap webcams to track multiple hands over a table-top. It identified hand-like

objects in front of a background that was assumed stationary. The position and orienta-

tion of each hand was then extracted, with tracking using a Kalman filter allowing the

hand velocity to be estimated. Characteristic patterns of motions pre-defined as canon-

ical gestures were recognised by dynamic time warping. Finally, applications were built,

allowing the system to be tested. The system can be seen in use in the photographs of

Figure 2.

The remainder of this report details the development of this system and reports re-

sults. Section 2 describes previous work in the field and justifies the general approach

taken. Section 3 then provides the technical framework for the system, which is referred

to where it is applied later in the report. Section 4 provides a more detailed overview

of the system, with a full description of the implementation given in Section 5. Finally,

Section 6 reviews and evaluates the system and Section 7 gives possible extensions for

the project and future directions for research in the area.
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2 Previous work

2.1 Table-top environments

Tables can be defined, as by Mazalek et al. (2009), as physical products with smooth flat

tops. Around these inauspicious objects, a wealth of human activities take place. They

provide a surface on which arms can be rested and on which objects can be placed for in-

teracting with. Traditionally, these have been fixed physical artefacts, but with modern

technology, these artefacts can be changeable, augmented or even virtual, offering the

potential for greater power and flexibility, as well as opening up table-top environments

for direct interaction with computers.

Numerous approaches have previously been taken in developing new forms of table-

top environment interfaces. One distinguishing factor is the sensing technology used in

order to augment the table-top. One form is the placing of sensor technology within

physical artefacts, for example pens. Song et al. (2009) use a sensing pen and projector

to digitise the table-top, developing an application in architectural design. Similarly,

Steimle (2009) also use a sensing pen ‘Anoto’, and recognise gestures from the motions

of the pen to perform certain functions.

A more prevalent form is sensing table-top surfaces, often known as multi-touch sur-

faces. An overview of issues relating to these surfaces and designing interactions with

them has been given by Buxton (2009), with recent examples involving both interaction

with marked tangible objects on the surface (Kaltenbrunner & Bencina, 2007), (Mazalek

et al., 2009) and by direct touch with hands (Wobbrock et al., 2009).

A final form is the use of vision for the sensing, with cameras suitably placed to view

the table-top. Note that many of the sensing table-tops use the same technology but

visually view the table from below, eliminating occlusion between the hands, at the cost

of not allowing for interaction with the table covered. This form has also been used for

interaction with tangibles (Reitmayr & Drummond, 2005), (Zufferey et al., 2009) and

directly with hands (Taylor & Drummond, 2007), (Do-Lenh et al., 2009).
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From these examples, it is clear that another distinguishing factor is the use of tan-

gibles versus ‘natural interaction’ i.e. the use of the body directly. In many cases,

systems that make use of tangibles require special tangible objects to be used, and

while these may be as simple as visual markers on pieces of paper as in the work of Zuf-

ferey et al. (2009), in practice this may cause increased costs and setup time for the user.

With natural interaction, information is encoded by the motion of the person inter-

acting, which with the more sophisticated means of sensing described above can go

beyond treating this motion like the simple motion of a mouse and make use of gesture.

2.2 Gesture-based interaction

Gestures have been studied for human-computer interaction for well over twenty years

now, as evidenced by early work such as that of Krueger et al. (1985). However, its

use is still an active area of research due to difficulties in many aspects of the design

of such systems. In using gestures for interface design, the two critical aspects of the

design are the design of the gestures that the users themselves must perform (or at least

the form these can take), and the design of a system to sense and recognise these gestures.

Considering the first aspect of the design, it is first necessary to clarify what is meant

by a gesture. A simple definition is ‘a motion of the body that contains information’

(Kurtenbach & Hulteen, 1990). A rich set of body motions fits such a definition, and

to aid understanding various gesture taxonomies have been developed. Billinghurst &

Buxton (2008) develop a taxonomy in which six forms of gesture are described:

• Gestures that evoke a referent: symbolic (i.e. with an agreed meaning) and deictic

(directing towards something in the environment)

• Gestures that depict a referent: iconic (describe an object) and pantomimic (de-

scribe how to use an object)

• Gestures that relate to the communication process: beat (communicate rhythm)

and cohesive (communicate connections)

The types of gestures considered are important as they have different characteristics:

symbolic and deictic gestures may often be stationary, whereas iconic and pantomimic
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gestures often involve motion. Related are concerns of the usability of the system,

whether it is comfortable to use and accessible to the users. This relationship comes

about because gestures that are more comfortable to perform are often performed more

accurately by the user. For example, Foehrenbach et al. (2008) choose an open hand

point over a point with a finger extended due to cited literature providing evidence that

this both requires less hand tension and can be used to point more accurately.

The second aspect of the design is how to sense and recognise these gestures. Using vision

to sense gestures is well established for the reasons described in Section 2.1, despite prob-

lems including accuracy, ability to track fast movements and occlusion (Billinghurst &

Buxton, 2008). An overview of hand gesture recognition with vision is given by Pavlovic

et al. (1997), in which two key properties of such a system are described: time instant

invariance and time scale invariance, as in general it does not matter when a gesture is

performed or (perhaps within some limits) how long is taken in performing it.

Means of modelling gestures to be recognised visually are described by Konstantinos

(2004), with the three main groups being model-based, view-based and low level feature-

based approaches. Model-based approaches typically define an articulated model of the

hand, and infer parameters for this model from the images. Gestures are then defined

in terms of hand poses and their change over time. Examples include the work of

Dorfmüller-Ulhaas & Schmalstieg (2001) which requires the user wear an exoskeleton

glove but runs in real time and Wu et al. (2001) which takes a probabilistic approach

and makes no mention of the speed of processing. As evidenced by these examples, the

three key problems with this approach are the typically high number of parameters to

be inferred, the difficulties of carrying out the inference in real time and the difficulty

of determining appropriate visual features with largely textureless hands.

View-based approaches define gestures in terms of the data observations expected. A

simple example is given by Ye, Corso & Hager (2004), with a more sophisticated approach

for multiple simultaneous users given by Stenger et al. (2008). Using two cameras, a

depth map can be used as the basis of a similar system as in Muñoz-Salinas et al. (2007).

Key problems with these methods is ensuring invariance to affine transformations and
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background, and providing adequate training data. One approach to achieving the de-

sired invariance is to infer a canonical view as in the work of Grzeszcuk et al. (2000).

The final approach is the use of low level features. The aim of this is typically to

increase speed and robustness, but there is also justification from the study of human

gestures. Quek (1994) suggests that human observers also find precise hand pose move-

ments difficult to detect as the hand moves, implying that is sufficient to determine

gross hand motion when a hand is moving, and hand pose only when a hand is rel-

atively stationary, to detect any form of gesture. Examples of work using low level

features include the work of Maggioni & Kämmerer (1998), where the hand position is

tracked while the user is wearing a glove and the work of Starner & Pentland (1998),

where the centroid and principal axes of hands detected by colour segmentation are

tracked. Stereo systems also take this approach: Malik & Laszlo (2004) use the stereo

disparity to determine whether fingers are in contact with a specified surface on which

gestures can be performed, and Leibe et al. (2000) determine ‘fingertip’ and ‘shoulder’

points to track where a single arm is pointing to. In all of these systems, the key dif-

ficulty is still hand detection in potentially changing background and lighting conditions.

Numerous approaches for building classifiers for gesture recognition have also been taken,

including Hidden Markov Models, artificial neural networks and rule-based approaches,

as described in Mitra & Acharya (2007) and Konstantinos (2004), with the approaches

offering trade-offs between accuracy, speed and training time.

Overall a wide range of tools have been developed for visual gesture interaction systems.

However, there are still challenging problems which have not been fully addressed, in-

cluding hand detection and segmentation and gesture detection (i.e. differentiating a

gestural from a non-gestural motion), which are often dealt with by making assumptions

about environmental conditions (Konstantinos, 2004). There are also higher level issues

that have not been addressed: most solutions do not make use of 3D information and

do not allow for multiple users to interact simultaneously with the same system.

7



3 Technical background

This section provides an overview of the theoretical framework used in various aspects of

the system and gives references to more thorough descriptions. The specific application

details of these areas are given later in the report and refer back to this section.

3.1 Camera calibration

Camera calibration refers to the determination of the relationships between the geometry

of real world objects and the geometry of these objects in camera images of them.

These relationships are termed projective relationships, as they relate the geometry of

3D objects to 2D projections of those objects. The following describes the projection

framework used in this project. Further details can be found in Cipolla (2006).

3.1.1 Homogeneous co-ordinates

A key concept widely used in projection theory is that of homogeneous co-ordinates.

These are an alternative and equivalent way of writing co-ordinates which allow many

equations in projection which are non-linear in Cartesian co-ordinates to be written

linearly (Cipolla, 2006). Cartesian co-ordinates can be converted into homogeneous

co-ordinates by adding an extra dimension and an arbitrary scale:

(X, Y, Z)→ (λX, λY, λZ, λ)

3.1.2 Extrinsic calibration

Extrinsic calibration determines the projective relationships which are independent of

the camera used. This amounts to determining a transformation from real world co-

ordinates to a set of camera-centric co-ordinates, as illustrated in Figure 3. This can be

described very simply in homogeneous co-ordinates:
Xc

Yc

Zc

1

 =


r11 r12 r13 Tx

r21 r22 r23 Ty

r31 r32 r33 Tz

0 0 0 1




X

Y

Z

1

 (3.1)
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Figure 3: Extrinsic camera calibration (from Cipolla, 2006)

3.1.3 Intrinsic calibration

Intrinsic calibration determines the relationships between a camera-centric co-ordinate

system and camera pixels. A pin-hole model for the camera is used, which defines the

camera in terms of an optical centre (the ‘pin-hole’) and an upside-down image plane

which the light which passes through the pin is projected onto. The upside-down image

plane can be more conveniently represented by its mirror: an image plane between the

optical centre and the real world, onto which the real world scene is projected. Using

such a model, linear camera calibration amounts to positioning and scaling the image

plane in camera-centric co-ordinates, as illustrated in Figure 4.

The first step is to project 3D positions onto the 2D image plane, taking perspective

into account. Note that the inverse of this is that a pixel on the 2D image plane defines

a ray through this point and the optical centre on which the real object colouring that

Figure 4: Intrinsic camera calibration (from Cipolla, 2006)
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pixel must lie. This projection is described by the following equations (Cipolla, 2006):

x = f Xc

Zc
y = f Yc

Zc

Where f is the focal length of the camera and x = (x, y)T for consistency with the figure.

The next step is to convert from the 2D image plane co-ordinates to pixel co-ordinates.

This is described by the following equations:

u = u0 + kux v = v0 + kvy

Where w = (u, v)T are the pixel co-ordinates (from Cipolla, 2006).

In practice, cameras exhibit non-linear distortion. To account for this, a quintic camera

model with greater scope for parametric tuning was used throughout this project, with

the calibration described by the following equations (from TooN, Drummond et al.):

u = u0 + fu
Xc

Zc

1 + c

∣∣∣∣∣∣Xc/Zc

Yc/Zc

∣∣∣∣∣∣
2

+ q

∣∣∣∣∣∣Xc/Zc

Yc/Zc

∣∣∣∣∣∣
4 (3.2)

v = v0 + fv
Yc

Zc

1 + c

∣∣∣∣∣∣Xc/Zc

Yc/Zc

∣∣∣∣∣∣
2

+ q

∣∣∣∣∣∣Xc/Zc

Yc/Zc

∣∣∣∣∣∣
4 (3.3)

Note that the inverse of this relationship, giving the transformation from image pixels

to the image plane, cannot be found analytically. However, the solution can be found

by iterative methods such as Gauss-Newton.

3.2 Epipolar geometry

In multiview systems, the relationships between what is seen in each camera can be

understood through their epipolar geometry. A number of key concepts in epipolar

geometry are shown in Figure 5:

• The baseline is the line joining the optical centres of the two cameras.

• An epipole is a point of intersection of the baseline with an image plane.

• The epipolar plane is a plane defined by the baseline and a point in the real world.

• An epipolar line is a line of intersection of the epipolar plane with an image plane.
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Figure 5: Epipolar geometry (from Cipolla, 2006)

Note that an epipole represents the projection of the optical centre of one camera onto

the image plane of the other. Note also that any point on an epipolar plane, by def-

inition, defines the same epipolar plane and thus the same epipolar lines. All other

real world points define different epipolar planes, rotated by a certain angle about the

baseline.

This last property can be used to define the epipolar angle as the angle the epipolar

plane makes around the baseline. This angle can be used to uniquely define an epipolar

plane and thus a pair of epipolar lines in an epipolar system. This angle thus parame-

terises the epipolar constraint, the constraint that any real world point must appear in

each camera on epipolar lines corresponding to the same epipolar plane.

This epipolar constraint can be used to solve a key problem in multicamera systems,

the problem of correspondence or matching: given multiple views of the same scene,

which points in each view correspond to the same point in the real scene? The epipolar

constraint constrains corresponding points to lie on corresponding epipolar lines.

In order to make use of this constraint for solid objects, it is necessary to identify points

on each image of an object which correspond to a unique point on the real object. The

epipolar constraint may then be used for matching. The global epipolar tangencies, the

most extreme points on the real objects tangent to epipolar planes as illustrated in Fig-

ure 6, are suitable for this purpose as these are uniquely identifiable in each image as

the points on the most extreme images of the object which are tangent to epipolar lines.
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Figure 6: Global epipolar tangencies

Equivalently, by parameterising each epipolar line (and thus each pixel which lies on

that line) by the corresponding epipolar angle, the points of epipolar tangency are those

in the image of the object with maximum and minimum epipolar angles, and hence they

may also be referred to as global epipolar angle extrema.

Global epipolar tangencies are especially useful because, although they may be occluded

by other objects, they cannot be self-occluded. However, further information may also be

gained by considering local epipolar tangencies, even though these can be self-occluded,

which correspond to local maxima and minima in the epipolar angle along the edges of

the images of the objects (hence local epipolar angle extrema). These are illustrated in

Figure 7.

For further details, see Cipolla (2006).

Figure 7: Local epipolar tangencies
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3.3 The Kalman filter

The Kalman filter provides the minimum mean square error estimator for a dynamical

process which can be represented as by the following stochastic difference equations,

with internal state xk, control input uk, measurement zk, and additive process noise wk

and measurement noise vk:

xk = Axk−1 +Buk + wk (3.4)

zk = Hxk + vk (3.5)

Where it is assumed that:

xk ∼ N (x̂k, P ) (3.6)

wk ∼ N (0, Q) (3.7)

vk ∼ N (0, R) (3.8)

In practice, real systems do not meet the above conditions, but may be well approxi-

mated by this model.

For such a system, given the parameters A, B, H, Q and R, the Kalman filter can

be derived as a two-step recursive filter (Welch & Bishop, 2001). The first step, the time

update or prediction step, estimates the distribution of the state at time step k based on

prior knowledge i.e. knowledge up to time step k − 1:

x̂−k = Ax̂k−1 +Buk (3.9)

P−k = APk−1A
T +Q (3.10)
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The second step, the measurement update or correction step, incorporates the measure-

ment at time step k to provide an a posteriori estimate of the distribution of the state

at time step k:

Kk = P−k H
T (HP−k H

T +R)−1 (3.11)

x̂k = x̂−k +Kk(zk −Hx̂−k ) (3.12)

Pk = (I −KkH)P−k (3.13)

Where Kk is termed the Kalman gain, which with the above form minimises the trace

of the a posteriori state covariance matrix, i.e. the mean square error of the estimate.

The recursive nature of this filter, and the simple linear algebra calculations required at

each time step, allow it to be implemented simply and efficiently.

For a reasonable set of parameters for a system, the Kalman filter can thus be used

to estimate the state of the system over time, despite process and measurement noise.

This can also be useful for estimating state components that cannot be directly mea-

sured.

For further details, see Welch & Bishop (2001).

3.4 Dynamic time warping

Dynamic time warping is a technique for aligning time series which are stretched or

warped relative to one another along the time axis, as illustrated in Figure 8. It deter-

mines the time warp over the whole time series with minimum cost, for some defined

cost function, and calculates this minimum warp cost. In the context of this project,

this minimum cost is the useful output as it gives a measure of similarity between the

two time series. Dynamic time warping provides a very efficient means of calculating

such a measure as it can be calculated using dynamic programming (whence the name).

14



Figure 8: Finding a time warp (from Salvador & Chan, 2004)

The problem it seeks to solve can be clearly formulated as in Salvador & Chan (2004).

Given two time series X and Y ,

X = x1, x2, ..., xN

Y = y1, y2, ..., yM

construct a time warp W,

W = w1, w2, ..., wK

where each element of the warp wk represents a mapping between xn and ym, which can

be shown specifically in the notation as wnm.

The warp is constrained to start at the beginning of both time series and end at the end

of both time series and to pass through each intervening element of each time series,

giving a full mapping. The warp is also constrained to proceed along each time series

monotonically.

The optimal warp is that which minimises a specified cost function, which must be

dependent only on the mapping defined by each wk independently for efficient calcula-

tion with dynamic programming. This cost can be considered a distance between the

mapped elements of each time series:

Dist(W ) =
K∑

k=1

Dist(wk) (3.14)
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Having defined the above, dynamic programming can be used to find the minimum warp

cost. This is simple to define for the application of this project as a means to determine

the similarity between a pre-defined time series (a canonical gesture) and a series of

data from the vision system (see Section 5.7). Hence between each time step it is only

necessary to store the distance associated with the optimal warp that terminates with a

mapping to each element of the canonical gesture. When the data at the next time step

t is available, these distances (stored in vector D) can then be updated to give the new

optimal warp costs by the following update rule for element n of the canonical gesture:

D(t)(n) = Dist(wnt) +min
(
D(t−1)(n), D(t−1)(n− 1), D(t)(n− 1)

)
(3.15)

This update rule allows for the three possible monotonic mappings between the canon-

ical gesture and the data, as also illustrated in Figure 9. The first maps the current

data point to the same state of the canonical gesture as the last data point, the second

maps to the next state of the canonical gesture, and the last maps the current data point

to more than one state of the canonical gesture (i.e. skips states in the canonical gesture).

At each time step, the similarity between the time series, or between the data from

the vision system and the canonical gesture in this case, is given by the cost of the

mapping being completed at the time step. As this is dependent on how many data

points have been used in the mapping, the actual cost can be taken to be averaged over

the number of data points:
1

t
D(t)(N) (3.16)

For further details, see Salvador & Chan (2004).

Figure 9: Possible warps
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4 Overview

4.1 Key features

From the previous work, described in Section 2, a number of high level problems were

identified as having not previously been tackled. These related to the use of vision-based

gesture interaction systems for multiple simultaneous users while at the same time tak-

ing advantage of the potential with stereo vision systems of using full 3D information.

The major contribution of this project was to identify and work towards solving these

problems.

Another key feature was that the gestures considered were hand gestures. This was

not uncommon in the literature, but in the context of table-top environments was an

obvious choice as hand gestures performed over the table-top could be viewed by view-

ing the table-top itself, allowing interaction from any position around the table, which

would not be possible if the cameras angled away from the table-top towards the user.

As originally stated in Section 1, it was also desired for the solution not to require

any specialist or expensive equipment, and hence the cameras used were cheap webcams.

Finally, a key simplification used by the system was to focus only on determining gross

hand motion i.e. the overall movements of the hand. Based on the work of Quek (1994),

this low level feature extraction should be more robust than full hand pose determination

due to the reduced complexity of what has to be inferred by the vision system, and also

faster and able to run on affordable hardware, but not greatly reduced in potential to

recognise gestures. Such a system was also expected to increase usability by not placing

specific demands on users’ hand configuration. The system should also generalise to

allowing gesture using a pointing device, to give more accuracy as with the use of a

stylus in many touch-screen devices.
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These features led to the following project problem statement.

To develop a real-time system to visually detect and track
the gross motion of hands in 3D over a table-top, and recog-
nise specific motion gestures, using only cheaply available
cameras. The system should be easy to use, support mul-
tiple simultaneous users and be robust.

Note that it is not suggested that such a system is the answer to all the problems

of human-computer interaction: it is not. There are many drawbacks of the system

proposed, for example that requirement of line of sight for the vision system to function,

and the usability issues of requiring specified motions to be carried out by the user.

However, the hope is that it would be a more effective interface for certain applications.

4.2 Use cases

The potential for the outlined system can be demonstrated by considering use cases in

which it can outperform existing methods. Firstly, a design environment can be imag-

ined in which a team of designers may work together on a single augmented surface.

The 3D hand tracking could be used to assist 3D design, with gestures used to choose

different functions of the design system, such as to add, remove and locate parts and to

choose which part of the design to work on. Many people in the team could be working

on designing the same element or parts of the same element, and would all be able to

the work of the others as well as if they were hand-drawing the design. With no special

devices required for interaction, people could leave and join the process easily, without

the potential for essential interactive devices to become lost or to break.

A second use case can be taken from the example of Reitmayr & Drummond (2005):

one can imagine augmenting the map table interactions for co-ordinating flood control

in the city of Cambridge by use of hand gestures. For example, thumbnails of photos

taken at sites around Cambridge could be projected onto the map at the location they

were taken. A selection gesture (such an encircling) could select a photo to be viewed

in greater detail elsewhere on the the table (at a location selected by pointing). While

viewing, rotation and vertical motion gestures may be used for rotating and resizing the

image to allow a clearer view, or to show the image to another user. This may have some

benefits over the system described by Reitmayr & Drummond by reducing the need for

18



tangible interfaces which may be mislaid or in short supply, allowing the system to aid

the decision making process and responsiveness of a flood control team and allow them

to carry out their operations more effectively.

4.3 Implementation

The physical setup for the system was flexible but was essentially as shown in Figure 10.

Two cheap web cameras were used, located above the table-top to allow the vision sys-

tem to clearly see the the table-top.

The cameras were connected to a computer with a dual-core processor, each proces-

sor with clock speed 2.40GHz, running openSUSE Linux. The cameras could easily be

accessed through the C++ library LibCVD (Drummond et al.), developed within the

lab. The software developed for the system was written in C++ so as to make use of this

library and also due to its advantages in speed and power over other programming lan-

guages. This was necessary as it was desired for the system to run in real time, resulting

in high requirements of processing and memory usage, especially for parts of the system

requiring operations to be carried out on every pixel of each image from the two cameras.

The processes required by the software were as shown in Figure 11:

Background subtraction: Determine pixels of interest in the images i.e. those that differ

from the (assumed fixed) background (see Section 5.2).

Figure 10: Table-top system setup
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Figure 11: Process diagram of system

Segmentation: Separate the groups of pixels into lists of pixels for each hand in each

image (see Section 5.3).

Stereo matching: Determine which hand images from each camera correspond to the

same real hand (see Section 5.4).

Feature extraction: Extract the required motion features for gesture detection from

the tracked hands (see Section 5.5).

Tracking: Track real hands moving in the images over time (see Section 5.6).

Gesture recognition: Recognise gestures from the time series of motion features (see

Section 5.7).

These detected gestures could then be used by applications to carry out actions (see

Section 5.9).

In the design of these processes, the main constraint was that the processes were fast

enough to be able to run on the system in real time. Further desired properties were ac-

curacy, robustness to illumination, hand movement location and speed, usability and the

ability for multiple users to interact simultaneously. Note that robustness to a generally

varying background was not aimed for, allowing background subtraction to be used to

identify pixels of interest. This was to reduce the scope of the project to more manage-

able limits, although it is clearly a desirable property which could be worked towards

if time allowed. In practice, simple and fast approaches were tested first, with more

complex procedures used if the simple approach did not provide adequate performance.
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5 Implementation

5.1 Camera calibration

In order to use a stereo vision system to locate real-world objects in 3D, it is necessary

for the cameras themselves to both be calibrated to a 3D reference frame, and for the

mappings from 3D locations to camera pixels to be defined. This is termed calibration

of the cameras, and determines the parameters of the projective relationships defined in

Sections 3.1.2 and 3.1.3. Note that this need only be carried out once before the gesture

interaction system could be used.

The calibration was performed using existing software that was developed in a previous

fourth year project (Taylor & Drummond, 2007) and software included with LibCVD

(Drummond et al.). These systems output these parameters to a file which could be

read in by the software.

Note that, due to the non-linear camera model used (see Section 3.1.3), the full pro-

jection from 3D location to camera pixel was non-linear. Hence much of the geometric

processing was carried out on the linear image plane found by inverting the non-linear

relationship of Equations 3.2 and 3.3.

5.2 Background subtraction

The first step of the vision system was to detect pixels in the camera images belonging to

hands. This was implemented by simple background subtraction, under the assumption

that the background changed less frequently than pixels of interest. Background subtrac-

tion builds a model of the background pixels by some form of adaptive filtering. Pixels

from each camera image were classified as foreground if they differed from the back-

ground model by above a certain threshold in colour, otherwise they were classified as

background. The fast and simple approximated median filtering algorithm (McFarlane

& Schofield, 1995) was used to adapt the background model, as described in Algorithm 1.

Note that the algorithm only updated the background model for pixels which the existing

model classified as background. This required a good initial estimate of the background
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Algorithm 1 Approximate median filtering background subtraction

for all pixel positions p do
if p is a background pixel then

if Input(p).Red > BackgroundModel(p).Red then
Increment BackgroundModel(p).Red

else if Input(p).Red < BackgroundModel(p).Red then
Decrement BackgroundModel(p).Red

end if
{Same for Blue and Green colour components}

end if
end for

image (i.e. a ‘hand-free’ image of the scene). However the background model adaptation

was still useful to allow some robustness to changes in lighting conditions and camera

parameters such as contrast and gain, which by default varied automatically.

Another initial problem, due to the use of only background subtraction to detect hand

pixels, was that this method was incapable of distinguishing the actual hand from the

shadow of the hand on the table-top surface. To remove this problem, the table was

covered in black card. This was an undesirable constraint as it places unreasonable

constraints on the table-top which violate the motivation for the system, however it was

necessary in this case due to limited time; with more time available, more sophisticated

techniques could be employed which may allow this constraint to be removed.

5.3 Segmentation

5.3.1 Flood-fill edge segmentation

The hand pixels detected by background subtraction were then grouped into separate

‘hands’ by segmentation i.e. the grouping together of connected foreground pixels. This

was first carried out in order to extract the segment edges by the flood-fill algorithm as

outlined in Algorithm 2.

At the end of the algorithm’s run, the list Segs contained the segments, each itself

a list of pixels. Segments were removed if they only contained a small number of pixels,

as many segments were simply groupings of noise. It was found that a lower limit of 200

pixels was suitable for this.
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Algorithm 2 Flood-fill algorithm for edge segmentation

create list Segs
for all pixels p in image I do

if Foreground(p) is true and Scanned(p) is false then
create new list S
push p to list T
while T not empty do

remove item from T and put in t
if Scanned(t) is false then

Scanned(t) is true
if Foreground(t) is true and Foreground(t′) is false for some t′ in
Neighbours(t) then

push t to list S
push all t′ in Neighbours(t) to list T

end if
end if

end while
push list S to list Segs

end if
end for

A key problem with this method was that if hands touched or occluded each other

from the viewpoint of the camera, they were placed in the same segment (even if a

human could easily detect that there must be two hands involved due to the number of

fingers, etc). However, this was not problematic provided the hands were not always in

this state, as later processes tracking the hands moving over time were able to determine

when hands have moved into such a position and still track the position of the hands

separately.

5.3.2 Branch-free edge segmentation

The edge segmentation described in Section 5.4.2 also had the problem that the ex-

tracted edge contained branches and loops due to noise and single pixel wide sections

in the output of the background subtraction. This was problematic in that it led the

extracted edge to not be the true, most outer edge of the segment and because the list

of pixels in the edge was not in a meaningful order. To allow later processing to use this

information, a better method to determine the correct edge segmentation needed to be

implemented.
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Figure 12: Possible edges to follow for branch-free edge detection

The key idea in this implementation was that the very first edge pixel found must

lie on the true edge, as otherwise one of the pixels checked earlier in the scan through

the image would have initiated the segmentation of that segment. The true edge could

then be determined by following the pairs of foreground and background pixels where

the two types of pixel border the respective type of pixel in the previous pair. Hence all

the background and foreground pixels segmented were connected, a more strict condition

than that used in Section 5.3.1. This was equivalent to considering the actual edge to

be the border between the foreground and background pixels rather than a list of either.

From a starting point, there are a number of possible paths which this edge could take,

as illustrated in Figure 12. Which are valid depended on whether the neighbouring

pixels were classified as foreground or background as shown. By following at each step a

valid next edge and preventing an edge being followed more than once, the branch-free

edge segmentation could be made.

This method was implemented and correctly segmented the true edge, giving the list of

edge pixels in order of bordering pixels. Despite requiring more conditions to be checked

throughout the segmentation, it was found not to be noticeably slower.

5.4 Stereo matching

Once the pixels were segmented into hypothetical images of hands, it was necessary to

determine which hand images corresponded to the same real hand. Note that, with a
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very high frame rate, this could be possible simply by time-domain tracking of the hands

from the moment they entered the images. However, with the relatively low frame rate

available and the potential for people to move their hands very fast during an interac-

tion, such methods could not be relied on. Instead, other methods were used in which

the epipolar constraint (as described in Section 3.2) was key.

First, the global epipolar angle maximum and minimum were determined for each hand

image. The epipoles for each camera image were determined during the camera calibra-

tion in the 2D image plane co-ordinate system. One of these, say from camera 1, was

used to determine the epipolar angle for each pixel of each camera, a property of each

pixel which was constant provided the physical setup of the cameras did not change,

and hence one that could be calculated as part of the calibration stage.

In order to calculate this for camera 1, firstly a pixel in the image of camera 1 was

chosen and its image plane position determined. This required inverse solving Equa-

tions 3.2 and 3.3 (from Section 3.1.3), which was done using the standard LibCVD

function which uses three iterations of Gauss-Newton (Drummond et al.). The epipolar

angle, with epipole position e = (ex, ey)T , was then given by:

θ = arctan

(
Xc − ex

Yc − ey

)
(5.1)

Note that this set the epipolar angle datum (θ = 0) in the direction of the Xc axis for

camera 1, passing through of the camera 1 epipole (i.e. the projection of the origin for

camera 2 onto the image plane of camera 1). Hence to calculate epipolar angles in the

same parameterisation for camera 2, it was also necessary to project pixels in the image

of camera 2 to the 2D image plane of camera 1. This was possible by inverse solving the

intrinsic calibration equations as above, setting Zc = 1 (for camera-centric coordinates

for camera 2) so as to complete the specification of the 3D position on the image plane.

The transformation into 2D image plane co-ordinates for camera 1 was then completed

by transforming by extrinsic calibration Equation 3.1. Finally the above Equation 5.1

was again used to find the epipolar angle.
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5.4.1 Use of global epipolar angle extrema

Using the epipolar angle calibration, it was simple to determine the global epipolar angle

maximum and minimum for each hand image by searching through the pixels of each

hand image. The hand images could then be characterised in a 2D space by these values.

Matches were then made at first by greedily matching hand images which were closest

in terms of Euclidean distance in this space.

This method of matching was found not to be very accurate. A key reason for this

was that an implicit assumption of using the maximum and minimum epipolar angles

for each hand image was that each hand was a separate object, entirely located within

the image of each camera. In fact both of these assumptions were false, with at least one

edge of each hand image would be expected to be the edge of the camera image. Often

one of the epipolar angle extrema would occur along this edge, so that the extremum

did not provide information about the hand and would not match to the extremum for

the same hand in the other camera image. Hence the 2D space identified above could

be viewed as actually being of a much lower dimensionality and thus providing less

discriminatory information for the hand matching than might be expected.

5.4.2 Use of local epipolar angle extrema

In order to match more accurately, it was necessary to extract more information from the

segmented hand images. As well as the epipolar constraint, another common method of

determining information for matching is to use appearance, for example making use of

colour and texture to determine matching image patches from multiple cameras. How-

ever, in this case, only hands were to be tracked, with the poor quality images provided

by cheap web cams. Hence it was thought unlikely that methods of matching based on

appearance would be able to provide any reliable information. Instead, further geomet-

ric information was required.

One potential source of this information was local epipolar angle extrema, as described

in Section 3.2. These can self-occlude and thus they may not always be visible from both

cameras (if occluded) or the epipolar angles at which they occur may be different for

each camera (if partially occluded), as illustrated by three possible viewpoints of a hand
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(a) No occlusion (b) Partial occlusion (c) Full occlusion

Figure 13: Self-occlusion of a local epipolar extremum (marked by dot)

in Figure 13. However, as many may be present on each hand (obvious examples include

fingertips and the gaps between fingers, with the hand oriented appropriately), it was

thought likely that enough of these extrema may match to provide enough evidence to

match hands. Also, these local extrema would be more dependent on the position and

pose of the hand than the global extrema, and so could provide greater discrimination.

Local epipolar angle extrema were extracted simultaneously with the edge segmenta-

tion by a simple approximation. Given an epipolar angle threshold θTh and a minimum

extremum scale in terms of distance along the edge N pixels, a maximum was detected

if a pixel was greater in epipolar angle, by more than θTh, than the pixel N
2

before it

and the pixel N
2

after it. This is illustrated in Figure 14(a). A minimum was similarly

detected if the epipolar angle was smaller. If the extremum was stronger than another

within the length scale N , it was deemed a more accurate positioning of the same ex-

tremum and replaced it. This is illustrated in Figure 14(b).

(a) Maximum detected (b) Better maximum detected

Figure 14: Detecting local epipolar angle extrema
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Several methods were then tried for obtaining hand matches from these local epipo-

lar angle extrema. These included cost functions between each hand segment e.g. based

on the average sum of squared distances between each of the maxima and each of the

minima, and based on the number of extrema which were close (i.e. within a specified

threshold). It was also attempted to match each extremum individually, again by Eu-

clidean distance, with each match acting as a vote for the possible hand segment matches.

None of these method proved very effective at finding suitable matches. One obvi-

ous reason for this, looking at the extrema detected, was the number of ‘false’ extrema

detected in the noisy segment edges where segmentation failed, often if the arm was in

shadow, making it difficult to determine the correct edge against the black background.

In order to try and improve this, a number of means of filtering the extrema were tested.

These included increasing the threshold on epipolar angle difference such that only very

strong extrema were detected. The edge pixels around the extrema were also tested for

finger-like characteristics e.g. the pixels on each side of the extrema lying roughly on

parallel lines with opposing senses, measured with the covariance matrices of the pix-

els on each side. However, it proved difficult to achieve any improvement in performance.

This testing had made it clear that there were a number of fundamental issues with

the use of these features that it was possible no amount of processing would overcome.

In general, due to issues with the segmentation in areas such as the shadowed area of

the hand, the extrema detected would always be noisy. They would also always be sub-

ject to self-occlusion. For features that were inherently low dimensional to begin with,

with maxima and minima each independent and one-dimensional, these problems would

always lead to difficulties in extracting useful information from the extrema.

An artificial visual example of the task can be seen in Figure 15. While some simi-

larities can be seen between the two images of the hand in the structure of the extrema,

many of the extrema are only present in one image or are shifted due to partial occlusion.

With hands located in a similar position in the visual scene, it would not be expected

that the extrema would be located so differently, and hence distinguishing between them

would not be expected to be reliable.
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Figure 15: The difficulty of matching with local epipolar angle extrema

5.4.3 Requiring a user constraint

A large amount of time had been spent working on the use of local epipolar angle extrema

for hand matching, without much success. In order to ensure that at least a simplified

version of the system could be developed in the time remaining, it was necessary to

impose some further constraints on the system to allow the matching stage to be made

accurate enough. A simple way to do this was to ensure that matching with the global

epipolar extrema would work well.

This was achieved by requiring that the user have their hand not pointed away from the

cameras and pointed down (towards the table), ensuring that a global epipolar angle

minimum could be used for matching. These were quite strong constraints, but would

still allow plenty of flexibility in the interaction to allow the system to be tested.

In order to deal with situations when the hands were located in close to the same

epipolar plane, the local epipolar angle extrema were still extracted. Only the minima

were used, as with the constraints added above these were less likely to be occluded,

and these were filtered to remove the weakest minima in each segment by location in

the image. The global epipolar angle minima were found by further filtering of this set

to find the minimum with the lowest associated epipolar angle within a large region of

the image. Note that this allowed for multiple global minima in each segment, to allow

some tolerance to issues with the segmentation.
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Algorithm 3 Unique matching

while boolean c is true do
c← false
for all hand images i from camera 0 do

if i not already matched then
for all hand images j from camera 1 do

if j not already matched then
if |MinEA(i)−MinEA(j)| < EAThres then
j is a potential match for i

end if
end if

end for
if i only has one potential match j0 then

Match i andj0
c← true

end if
end if

end for
for all hand images j from camera 1 do
{As above with potential matches i from camera 0 searched for}

end for
end while

The matching algorithm then made matches between hands with global minima uniquely

located in close to the same epipolar plane (specified by a threshold). The algorithm for

achieving this is described in Algorithm 3. Matches from each hand image from each

camera were checked as a match may be unique even if one of the hand images has

several potential matches within the epipolar angle threshold, provided the other hand

image has only the one potential match. Note that the continuation boolean c remained

false at the end of an iteration once all unique matches have been made, ending the loop.

If all the hands could not be matched uniquely, a cost function was calculated be-

tween each hand based on the average error in good epipolar angle matches (i.e. within

a threshold) between local epipolar angle extrema. The match with the lowest cost was

made, and then algorithm then attempted again to make unique matches and reverted

back to using the cost function when this was not possible.

This proved much more reliable than the previous matching algorithms, providing usable

performance.
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5.4.4 Fingertip matching

An alternative mode of the system was also developed in which it was required for the

user to point with a finger. The system was otherwise as described in Section 5.4.3. This

mode had the advantages of offering greater precision to the user in terms of control of

the position and orientation measured by the system. However, it was possible that

this would come at the cost of a decrease in usability as described in previous work

in Section 2.2, due to the physical difficulty of pointing for a length of time. With

the inherent usability issues of gesture-based interaction, the further requirement of a

pointing gesture may not seem such a strong additional constraint, however.

5.5 Feature extraction

The means of interaction of the user with the system was the gross hand motion, based

on visual measurement of the position and orientation of the hand. Once hands had

been segmented onto of the camera images and matched, it was possible to do extract

this information.

In order to determine a 3D position for the hand, it was first necessary to define a

‘position’ of the hand in each camera image. In the hand tracking mode and fingertip

tracking mode respectively, the pixels making up the hand and finger were extracted by

proximity to the global epipolar angle minimum. The centroid of these pixels was then

chosen for the position measure, given by:µx

µy

 =
1

N

N∑
n=1

xn

yn

 (5.2)

As in Section 5.4, this position was then mapped into 3D co-ordinates by inverse solving

Equations 3.2 and 3.3, setting the z co-ordinate to unity and solving Equation 3.1.

With no error in any of the measurements, the 3D position of the hand would then be

constrained to lie on the ray between this 3D point and the optical centre of the camera.

With such rays from two cameras, the 3D position would lie at their intersection. In

practice, it was necessary to solve for the least squares position, given by the half-way

point on the line joining the two rays at their closest point, as illustrated in Figure 16.
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Figure 16: Rays from each camera constrain a 3D position

The rays were parameterised in terms of the x co-ordinate, giving 3D line equations:

y = m1x+ c1 (5.3)

z = m2x+ c2 (5.4)

For both cameras, these equations can be written in a matrix form:
−m11 1 0

−m21 0 1

−m12 1 0

−m22 0 1



x

y

z

 =


c11

c21

c12

c22

 (5.5)

The least squares solution for the position was then calculated using the singular value

decomposition functions of TooN (Drummond et al.).

It was then desired to determine a 3D orientation for the hand. In order to do this,

it was first necessary to determine the orientation of the hand in each camera image.

The measure chosen for this was the axis through the centroid about which the second

moment of area of the hand pixels (given as before) was minimised. This can be shown

to be given by the eigenvector of the covariance matrix of hand pixels (about the centroid

as found by Equation 5.2) corresponding to the larger of the two eigenvalues (Pearson,

1901).
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Figure 17: Planes from each camera constrain a 3D orientation

This covariance matrix is given by (ignoring normalisation):

N∑
n=1

 (xn − µx)2 (xn − µx)(yn − µy)

(xn − µx)(yn − µy) (yn − µy)2


The eigenvector was found using the eigenvector functions of TooN (Drummond et al.).

The same geometry as used in finding the 3D hand position was then used to find

the 3D ray between the optical centre and a point in the image along the direction of

this orientation from the centroid. This ray and the ray passing through the centroid

defined a 3D plane. The 3D orientation was given by the intersection of the two planes

from the two cameras, as illustrated in Figure 17.

In order to calculate this orientation, each plane was parameterised in terms of its

normal vector n:

nT r = d (5.6)

This normal vector could be determined as the vector cross product between vectors

parallel to the two rays defining the plane. The orientation could then be found by the

vector cross product of these two plane normals. This was normalised and multiplied by

±1 to constrain the orientation by assumption to always be pointing downwards (towards

the table-top), as given by the constraint introduced for matching in Section 5.4.3.
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5.6 Tracking

The correspondence problem was concerned with matching images of the same real hand

from two cameras. Tracking was then the problem of matching the matched images of

the same real hand over time, a necessary step in order to determine the motion of

the hands. This problem was solved in three stages; firstly, a predictive motion model

was developed, which predicted the 3D location of the real hands in the scene based

on past data. Secondly, these models were matched to the data from the preceding

parts of the vision system to complete the matching. The third stage was necessary for

dealing with the ‘edge effects’ of hands leaving the visual space, or new hands entering it.

The predictive model used was the Kalman filter as described in Section 3.3. A pre-

dictive motion model was needed in order to deal with occlusions with multiple hands

in the frame: if one hand occluded another, the predictive model would be able to pre-

dict this and allow tracking to continue when the hands were visible again. A constant

acceleration model was used (i.e. only position and velocity were included in the state

vector) and the parameters of the filter model were chosen based on the recommenda-

tions for initialisation of Kohler (1997) and by trial and error. Appropriate setting of

the parameters allowed the model to predict the hand motions well, but this was de-

pendent on the setup of the system. For example, while the calculations described in

Section 5.5 obtained an estimated 3D position, the error in this estimate was greater

in the directions towards the cameras as a small change in angle could lead to a large

change in estimated 3D position along these directions. This is illustrated in Figure 18.

(a) Small angle subtended (b) Larger angle subtended

Figure 18: Angles subtended by a moving object depend on the direction of motion
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The second part of the tracking algorithm matched detected hands in the latest im-

age frames (‘current hands’) to the predicted positions for previously detected hands

(‘past hands’). Hypothetical matches were proposed if the Euclidean distance between

a past hand and current hand was less than a threshold. If a number of past hand

positions were within this threshold for the same current hand, the past hand with the

highest position (i.e. on the z axis) was chosen for the match, by assumption that this

hand was occluding the others. If no past hand match could be made for a current hand,

it was assumed that the current hand was new to the visual scene.

The third part of the tracking dealt with a number of ‘edge effects’. In each case, a

most common explanation was inferred and action taken accordingly.

The first effect was the case of past hands for which there was no matched current

hand. It was assumed that the hand had temporarily left the visual scene. A counter

was incremented to count the number of consecutive time frames the past hand had

not been matched to a current hand, and if this counter reached a certain threshold,

tracking of the past hand ceased.

The second effect was the case of past hands which were matched to the same cur-

rent hand as other past hands. It was assumed that this was due to occlusion. For each

past hand, counters were incremented if the two past hands were matched to the same

current hand. If any of these counters reached a certain threshold, the past hands were

deemed to have converged to tracking the same real hand and the tracking of extraneous

past hands was stopped, leaving only one to track the one hand.

This tracking system was tested and was found, along with the feature extraction, to

perform well. This can be seen from Figures 19 and 20 which show plots of the positions

of a tracked fingertip as it followed a straight line and then rectangular guide on the

surface of the table a number of times. Notice that the results are very repeatable and

that there is little variation in the height reading along each guide, as would be expected

with both lying on the surface of the table.
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(a) 3D plot (b) y against x (c) y against z

Figure 19: Tracked position when following a straight line guide on the table surface

(a) 3D plot (b) y against x (c) y against z

Figure 20: Tracked position when following a rectangular guide on the table surface

However, while the accuracy was good, the system was unable to track hands that moved

very quickly, as the frame rate was not high enough to gain sufficient data. This was due

to limitations in the cameras and the time taken to carry out the required processing.

Hence, use of the system required sudden movements to be avoided, which felt somewhat

unnatural. Provided movements were relatively slow however, the tracking worked well.

There were also a number of unavoidable failure modes of the implemented tracker;

for example, if two hands were brought together and then moved apart, the motion

model would assume that instead the two hands had crossed over and so the hand

trackers would swap the real hands they were tracking. However, such motions would

not necessarily be normal and the ability to correctly interpret the action would not be

worth the greatly more complicated processing required.
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5.7 Gesture recognition

The previous sections of this report have detailed the system processes required to esti-

mate tracked motion of hands based on images from two cameras over time. This was

the input required for the motion-based gesture recognition system. In the previous

work described in Section 2.2, probabilistic frameworks such as Hidden Markov Models

were often used for gesture recognition to account for the uncertainty in the measure-

ments and in the performance of gestures. However, in the interests of speed, a more

deterministic method was tested first, based on dynamic time warping.

Dynamic time warping was introduced in Section 3.4. In general it offers an efficient

way to calculate an optimal warp between two time series in terms of a given cost func-

tion. This was applied to gesture recognition by considering gestures as a time series

of motion states. In these terms, canonical gestures could be pre-defined and compared

to the tracked hand motions. Dynamic time warping could then be used to find the

minimum cost of the tracked hand motions matching to any of the canonical gestures,

and hence allow detection of the gestures by setting a threshold on this cost.

Firstly, a motion state was defined. It was desired that the state should be invari-

ant to the position and orientation of the user. This was achieved by using as the state

a normalised 3D velocity vector in a co-ordinate system relative to the orientation of

the hand. For orientation unit vector o, the x direction was chosen to be the same as o,

the y direction was chosen to be perpendicular to x, horizontal and pointing to the right

Figure 21: User-centric co-ordinate system
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(found by the cross product of o with a vector in the z direction) and the z direction was

left as the vertical direction. The origin of the co-ordinate system was the centroid or

fingertip of the hand, depending on the mode being used. This is illustrated in Figure 21.

A vector x could be transformed to this co-ordinate system, given the 3D origin point

p in the original co-ordinate system, by the transformation:

x′ =


← eT

x →

← eT
y →

← eT
z →

 (x− p) (5.7)

where

ex = o, ey = o× [0 0 1]T , ez = [0 0 1]T

The same transformation, without the translation correction for the origin, was used to

find velocities in this co-ordinate system. Note that velocities with a magnitude lower

than a threshold were mapped to the zero vector to reduce noise when a hand was sta-

tionary or near-stationary.

Secondly, it was necessary to define a cost function between these states. The Eu-

clidean distance was chosen for this. It was also made possible to specify a fixed cost

for skipping a state in the canonical gesture i.e. matching a state from a tracked hand

to more than one state of the canonical gesture. For user-defined gestures which may

have few states, it would be expected that many states from the tracked hand would

match to each state in the canonical gesture. Hence the cost of skipping one state would

actually be much larger than just the Euclidean cost function of one poor match. The

state skipping cost could account for this.

Finally it was necessary to define the threshold for gesture detection. This was cho-

sen to be a constant allowed cost per time frame, with at least as many time frames as

states in the canonical gesture required. Recognition hypotheses were ruled out if, of all

of the possible warps of the tracked hand states ending at each of the canonical gesture

states, the minimum cost warp had a cost greater than the allowed cost.
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Figure 22: A natural left-right hand motion

Hence a state skipping cost and an allowed cost per tracked hand state were required

parameters of a canonical gesture. These costs, along with a series of states, were defined

for a few simple gestures such as a repeated up-down or left-right motion, and detection

of these gestures was tested. With appropriate parameters, the system worked well,

detecting most gestures performed and correctly distinguishing the different gestures.

However, a key issue with the system as so far described was clear when performing

a ‘left-right’ gesture: even in the user-centric co-ordinate system defined, moving the

hand in a direction perpendicular to the orientation was unnatural. A more natural

left-right hand motion would be a clockwise-anticlockwise rotation of the arm about

the shoulder, involving movement forward and backward and possibly up and down, as

illustrated by Figure 22. While it was possible to carefully define canonical gestures

of more accurate representations such as this, it would be easier to be able to deter-

mine the motions by recording the motions carried out in a training example. This was

implemented in the system. To ensure the lists of states required were not too long

and to allow generalisability for the gesture if performed more quickly than the training

example, the states recorded were discretized to 26 directions and duplicate consecutive

states removed.

This improved detection of more realistic gestures, making the system easier to use,

and also made user control of the system much more flexible, with the option to record

or write canonical gestures, with all gestures also fully editable at a later time.
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5.8 Code optimisation

Throughout the coding, care was taken in the programming of the algorithms in order

to ensure that the system could run as fast as possible, and at least in real time.

Such code optimisation was built into the processes by ensuring that they were written

in such a way as to minimise the required number of loops and branch statements, and

also to minimise the amount of data duplication. This allowed the full system tracking

one hand to be able to run at a frame rate of 14.3fps. That is, it was able to fully process

on average 14.3 frames of data (i.e. pairs of image frames) per second.

Further speed was gained by making full use of both processor cores with parallel process-

ing. The system was well suited to this as a number of the processing steps (background

subtraction, segmentation and finding of the epipolar angle extrema) could be carried

out for the image frame from each camera independently. This increased the frame rate

to 20.0fps on average.

5.9 Applications

A number of applications were implemented to allow the tracking and gesture recogni-

tion system developed to be applied to carrying out real tasks. The first two applications

required some precision and so used the fingertip tracking mode. For both these appli-

cations, the interaction space above the table-top was split in two by a horizontal plane.

Below this plane, gesture detection was not carried out, while above the plane it was.

This was necessary to overcome a key difficulty for some applications of using motion

gestures: it is difficult to maintain a hand location while performing the gesture.

The first application allowed control of the mouse pointer on the computer screen, with

an ‘up-down’ motion gesture used to perform a click. This was implemented using

XWindow test methods (see X.org) which allow control of the mouse pointer and click

events. This application worked well but proved hard to use; in order to locate the

mouse pointer to interact with an object on the desktop, it was necessary to locate the

corresponding position over the table-top which moved the mouse pointer to that loca-
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Figure 23: Painting application

tion (not necessarily intuitive in itself), and then move into the gesture recognition space

in order to perform a click. However, it was hard to move up into this space without

disturbing the position of the mouse pointer. Frequently this would move away from the

desired object and be the source of much frustration.

The second application allowed the user to paint with their finger while in the track-

ing region, with an ‘up-down’ gesture set to randomly change the colour of the paint,

and a ‘left-right’ gesture used to clear all previous paint from the screen. The working

application can be seen in Figure 23, showing the images from the two cameras on the

left with the automatic annotation of the detected finger and orientation, and the paint-

ing on the right. OpenGL (see OpenGL.org) commands were used to render the painting.

This application again worked well and provided a flexible and spatially meaningful

interface for producing computer drawings. For example, it could easily be used to draw

the outlines of real objects by moving the finger around the outline of the object. A

noticeable drawback of the system with this application was that small errors in the

matching could lead to erratic lines being painted, and hence the application did not

work well with multiple simultaneous users. The appeal of the application also encour-

aged users to use it for a reasonable length of time; before long it was found to be

physically tiring to use.
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The third application simply required gestures to be performed and so made use of

the hand tracking mode. Hand gestures were used to control a presentation, with ‘right’

and ‘left’ motion gestures allowing movement between slides and ‘down’ and ‘up’ ges-

tures allowing the presentation to be stopped and started. The main difficulty with

using this application was ensuring that only the required gesture was carried out while

interacting, as it was easy to accidentally perform one of the other simple motion ges-

tures while moving into and out of the interaction space.

Using these applications allowed the two modes to be compared. As expected, the

fingertip tracking mode allowed for greater precision by allowing the user to more be

aware of the position that was being tracked. However, it proved much harder to use

physically. This presented a trade-off, with the appropriate mode depending on the

intended application.

The applications also allowed the system in general to be evaluated. They showed that

the system worked and could be used in a number of applications, but suffered from

problems of specifying a precise location context for a gesture, defining and recognising

suitably distinguishable but intuitive gestures, physical usability issues and occasional

mis-matches. While the first three of these are inherent to this type of interface and not

unexpected, the last could be improved upon by better matching. Overall, the system

thus demonstrated the concept of a simple gesture-based interaction system, but showed

that further work is needed to make such a system practical.
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6 Conclusions and evaluation

In this project, a gesture-based interaction system for table-tops was successfully devel-

oped, requiring only a pair of cheap webcams and the software developed in the project.

The resulting system visually detected and tracked the motions of hands over a table-top

in real time, and recognised when pre-defined gestures were performed by the user, with

applications built to demonstrate and test the system. The approach taken allowed for

simultaneous interaction with multiple users and was reasonably robust to fast hand

motion and differences in illumination.

Several constraints were placed on the system to achieve this functionality. The table-top

was covered in black card, simplifying the problem of detecting and segmenting hands

against a noisy background and even reducing the difficulty of dealing with shadows.

The user was also required to point their arm roughly towards the camera in order for

their hand to be detected, and to avoid sudden movement. In a fingertip tracking mode,

the user was further required to point with a finger. These constraints reduced the ap-

plicability of the work in everyday environments and reduced the usability of the system.

Even with these constraints, there were a number of problems with the system imple-

mentation. It was not robust to changes in background and illumination while running,

it could slow down heavily with noise in the images and it frequently made errors in

matching hands between the two camera image frames. Further work is required to solve

these problems (see Section 7).

Overall the system was able to prove the concept of a cheap and fast gesture-based

interaction system. Only simple and fast techniques were used, and working applica-

tions were demonstrated using only the gestures that could be defined by the tracking

of gross hand motion. The motivation for this project was to see whether building such

a system was possible. This project has been successful in showing this. With further

improvements and hardware availability in the future, gesture-based table-top interfaces

should be available to all, and with them the hope of more flexible empowerment of

people through human-computer interaction.
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7 Extensions and future directions

Given more time, many possible extensions of the work in this project could be carried

out. These include the following:

Improved segmentation: Use of more sophisticated background subtraction and segmen-

tation algorithms such as that of Pilet, Strecha & Fua (2008) would allow the removal

of the black card cover and increase the applicability of the system. However, such

systems require more processing and hence would need to be chosen carefully to ensure

the system would still run in real time.

Use of motion for matching: It was noted in Section 5.7 that natural human motions

often involve moving in all planes. This implies that, when moving, a hand is likely be

seen to be moving from any possible viewpoint. This may provide further information

for hand matching.

Use of a probabilistic gesture recognition framework: In many of the gesture-based inter-

action systems described in Section 2, probabilistic frameworks for gesture recognition

were used to take into account the uncertainty in how gestures are performed and in

their sensing. For example, Hidden Markov Models could be used, perhaps through the

Georgia Tech Gesture Toolkit specifically built for gesture recognition (Westeyn et al.,

2003). These frameworks typically allow more accurate gesture recognition, although as

with the improved segmentation would also require more processing, as well as requiring

training of the models.

Building of test applications: Further test applications could be built to demonstrate

other aspects of the system such as its potential for multi-user interaction. A general

system for allowing external programs access to the system could also be built e.g.

through CORBA as in the work of Taylor & Drummond (2007).

Performing user tests: In order to determine whether the use of gross hand motion

gestures really did provide advantages over existing interfaces in some applications, and

to determine how the appropriate the two modes of the system (hand or fingertip track-
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ing) were to different applications, user tests could be performed.

Determining usability indices: The usability of the interface could also be compared

to other systems by developing a usability index such as through the development of a

three-dimensional extension of the steering law (see Accot & Zhai, 1997).

The work in this project has also suggested a need for future work in a number of

directions:

Detection and segmentation: These are problems that occur frequently in many ap-

plications of computer vision – how can objects of interest be detected against a general

background, and how can they be isolated in the image? It is likely that new ways of

representing objects and their visual appearance are needed to solve these problems in

general. For interface design, it is further important that such systems can be run in

real time.

Hand matching: This was the most challenging section of this project, as it concerned

identifying matching pairs of textureless, similarly coloured and shaped objects from

the view of each camera. It is possible that further non-appearance based constraints,

such as the motion constraint suggested above, could be found and provide an adequate

solution to this problem. A hardware-based alternative would be the use of three cali-

brated cameras, such that three epipolar planes would be defined (between each pair of

cameras) which would allow unique positioning in real space (except where these three

planes were coplanar, though this could be avoided by appropriate positioning of the

cameras). This would lead to an increased cost of the system, however, and make camera

positioning more challenging.
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